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CHAPTER 1. GENERAL INTRODUCTION 

Invention of integrated circuits marked the beginning of the electronic revolution. Electronic devices 

have become ubiquitous and the trend of miniaturization of transistors has been at the heart of 

increased functionality available to the consumers. As predicted by Gordon Moore in what is now 

commonly referred to as the Moore's law [1], the number of transistors on a single chip have roughly 

doubled every eighteen months. The increased number of transistors on a chip has resulted in more 

computing power becoming available and has enabled devices such as laptops, digital cameras, 

PDAs, etc. The digital circuitry benefits tremendously from the constant shrinking of the device sizes; 

the benefit for analog circuits is not quite so dramatic and, in many instances, the analog design 

becomes more challenging in newer processes that have lower power supply values. Real world 

signals such as voice are inherently analog in nature. Consequently, these analog signals are typically 

converted to their digital equivalent in order to fully utilize the benefits of available digital circuitry. 

Analog-to-digital converters (ADCs) are used to perform this function. 

For mobile battery-powered applications, low power dissipation is a critical requirement. Techniques 

that can reduce power dissipation or area in ADCs find use in a variety of applications and are of 

significance to the semiconductor industry. A technique that can reduce power dissipation or area of 

ADCs based on switched capacitor circuits is presented in this work. The technique is demonstrated 

to be applicable to pipeline and cyclic ADCs. A chapter describing more efficient use of area for 

extreme-ratio transistors is also presented. 

Dissertation organization 

This dissertation is a collection of four papers that have been published or have been prepared for 

publication. The first two papers describe a switched capacitor technique to reduce area and power 

consumption in pipelined and cyclic ADCs. The third paper describes a switched capacitor technique 

used to obtain a current reference with low sensitivity to temperature variations. The fourth paper 

describes alternate layout techniques for MOS transistors. Since the first two papers provide limited 

background, detailed background for ADCs will be presented in this chapter in order to help the 

reader get a better understanding of the novel idea presented in the papers. The conclusion chapter 

will summarize the contribution of each work. 
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Capacitor sharing and scaling technique for reduced power in pipelined 

ADCs 

ADCs convert an analog signal into its digital equivalent. A 1-bit ADC can be implemented using a 

comparator, as shown in Figure 1. An analog signal is applied to the input of the comparator. If the 

input is higher than a reference voltage, Vref, the comparator output is a '1'; a '0' is generated 

otherwise. In typical applications, the number of bits required can be higher. For example, if a digital 

control signal is needed to be T if the battery in a cell phone is 50% drained, a 1-bit ADC would 

suffice. However, if sensing of the battery status in increments of, say, 5% were desired, an ADC 

with more number of bits would be needed. 

Table 1 summarizes a few CMOS ADCs appearing in recent years and their respective architectures 

and salient features. A few commonly used architectures of ADCs are presented next along with their 

benefits and limitations. 

V. in 

V 

v>4 A 

'  i f  
out 

V 
out 

m 

time 

c 
Figure 1. Comparator as a 1-bit ADC and example signals 

Flash ADC architecture 

The flash ADC processes the input in a parallel manner to determine the digital representation of the 

given analog input. A basic 3-bit flash ADC [2] is shown in Figure 2. If the input signal magnitude 

can vary between 0 and Vref, 23 resistors are used to generate the required number of equally-spaced 

reference voltages. The input signal is applied to 23-l 1-bit ADCs (simple comparators), each 

comparing the input signal with a reference voltage. The output of these comparators is then 

converted to the desired 3 bits using an encoder. 
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Table 1. A summary of a few ADCs appearing in the literature 

Bits MS/s Process P(mW) Architecture Year Ref. 
12 110 CMOS, 0.18M 97 Pipeline 2005 [3] 
14 12 CMOS, 0.18)1 98 Pipeline 2004 [4] 

10 100 CMOS, 0.18g 67 Pipeline 2004 [5] 

13 16 CMOS, 0.25)1 78 Pipeline 2004 [6] 
8 20000 CMOS, 0.18M. 9000 80 parallel pipelines 2003 [7] 

12 75 CMOS, 0.35^ 290 Pipeline 2003 [8] 

10 30 CMOS, 0.30U 16 Pipeline 2003 [9] 
8 4000 CMOS, 0.35)1 4600 32 parallel pipelines 2002 [10] 

10 120 CMOS, 0.35)0, 234 2 parallel pipelines 2002 [11] 

6 1300 CMOS, 0.35M 500 Flash 2001 [12] 
6 1100 CMOS, 0.35M, 300 Flash 2001 [13] 

10 20 CMOS, 0.5)1 75 Subranging 1999 [14] 
8 75 CMOS, 0.5)1 70 Parallel Pipeline 1998 [15] 

6 200 CMOS, 0.5)1 150 Folding and Interpolating 1998 [16] 
10 100 CMOS, 1M 1100 Parallel Pipeline 1997 [17] 

12 4 CMOS, 0.8)1 45 Pipeline 1996 [18] 
13 5 CMOS, 1.2 ji 166 Pipeline, 2 bps 1996 [19] 

8 70 CMOS, 0.8u 110 Folding and Interpolating 1995 [20] 
10 20 CMOS, 1.2)1 20 Pipeline, 1.5 bps 1995 [21] 

Flash ADCs need one clock cycle to convert the analog signal. As a result, they can operate at very 

high speeds. However, this speed comes at the cost of more hardware resulting in higher power 

dissipation. To achieve an extra bit of resolution, the hardware needs to be doubled. If the area 

occupied for one bit is A, then the total area for an n-bit flash ADC is approximately 2" • A. The 

doubling of hardware roughly corresponds to a doubling of power dissipation. This geometrical 

increase in area and power dissipation with the increase in number of bits of resolution limits these 

structures to the 6 to bit range. [12-13]. 

Pipeline ADC architecture 

As mentioned earlier, the flash ADCs process the analog input in a parallel manner to achieve the 

conversion in one clock period. Due to this parallel nature, the area and power requirements double 

with every incremental bit. Instead of processing the input in parallel, a pipeline ADC serializes the 

conversion process, as shown in Figure 3. The complete pipeline is subdivided into stages with each 

stage processing the signal from its preceding stage. Each stage can be designed to generate 1 or more 

bits per stage. The analog signal is applied at the input of the first stage. The stage has a sub-ADC 
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Encoder -J+-

Figure 2. A 3-bit flash ADC 

that determines the digital bits for the stage. The digital bits are then used by a sub Digital-to-Analog 

Converter (DAC) to add or subtract an appropriately scaled reference voltage from the input. An 

operational amplifier (opamp) then amplifies the signal and creates a "residue" voltage that is passed 

on to the next stage. Each stage repeats the process until the residue has been processed by the last 

stage. The distinguishing feature of the pipeline ADC is the pipelining, the property that it does not 

have to wait for a conversion to complete before starting a new one. Since each stage processes the 

signals independently of the following or the preceding stage, the first stage starts to sample the next 

input after it has passed on its residue to the next stage. The output bits corresponding to a specific Vin 

are collected and output correctly by a time alignment block, as shown in Fig. 3a. The collection in 

correct order can be done by a simple shift register. 
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Stage 1 —• Stage 2 

% - m 

> 

" m 
' 1 

' m 
f 

Digital data time alignment 

V 
in.k-

y r y-
Sub 
ADC 

Sub 
DAC 

A, 
V. 

(a) Pipeline ADC block diagram (b) Block diagram of a single stage 

Figure 3. Block diagrams of a pipeline ADC and a single stage of the pipelined ADC 

For a 1 -bit/stage structure, the gain of the stage, Ak, is ideally 2 and the residue of the stage k can be 

written as 

y 
ref ( l )  

where dk is the digital bit generated by the sub-ADC. The ideal transfer characteristics of such a stage 

are shown in figure 4 [22]. 

residue 

Figure 4. Ideal stage transfer characteristics of a 1-bit/stage pipeline ADC 

The transfer curve of an actual pipeline stage usually deviates from the ideal one shown above due to 

the presence of non-idealities in the circuit. These non-idealities, their effects on the performance of 

the ADCs, and some solutions found in the literature are presented next. 
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Non-idealities in pipelined ADCs, their effects, and possible solutions 

A traditional pipeline stage combines the function of the DAC, amplification, and a sample-and-hold 

(S/H) for the subsequent stage into one block, commonly referred to as the Multiplying DAC 

(MDAC). A popular implementation of the MDAC for a nominal 1-bit per stage pipeline ADC stage 

is shown in Fig. 5 [23]. For a 1 -bit/stage design and ignoring parasitic capacitances, the capacitors are 

nominally equal and the output can then approximately be given by 

If the opamp and the sub-DAC are assumed to be linear, the sources of errors are charge-injection 

based offset, comparator offset, and gain error due to capacitor mismatches [22]. The effects of these 

mismatches on the transfer characteristics of a pipeline ADC stage are shown in Fig. 6. The dashed 

box marks the maximum allowable value of the output. In the presence of these non-idealities, the 

output of a stage could go beyond the maximum allowable range resulting in an input for the 

subsequent stage that is beyond its resolvable limits. As a result, missing decision levels appear in the 

overall performance of the ADC. In case of the comparator offsets, the transfer curve may be shifted 

instead of being centered in the complete input range. This shift results in missing codes in the overall 

transfer curve. 

(2) 

<t>2 

y. 

h 
y. 

c, 

load 

c2 

VDAC 

0.5 Vref 

Fig. 5 Conventional Switched-capacitor implementation of an MDAC 
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1 k residue residue residue 
< + v  V +v 

V m 
> 

(a) Comparator offsets (b) Charge injection offset (c) Capacitor mismatch 

Fig. 6 Effects of non-idealities on the transfer curve of one stage 

The non-idealities described above are undesirable for obvious performance reasons. Fortunately, 

techniques exist to reduce the effects of these non-idealities and a few will be described here. The 

first technique uses a gain that is less than the nominal gain of 2 and uses additional stages to achieve 

desired resolution. Such a technique that also involved calibrating the stages for offset errors, gain 

errors, and finite gain errors was proposed by Karanicolas et al [22]. The reduced gain helps in 

avoiding the output of a stage going beyond the maximum limit, i.e., avoid over-ranging. The 

resulting digital code needs to be converted into base 2 digital code. 

An alternate technique implements the redundant signed digit (RSD) approach. This technique sets 

nominal gain of the stage to 2 and uses extra comparators in the sub-ADC to detect the over-range 

condition. Proposed by Ginetti et al., [24] the scheme uses three comparators per stage and has the 

transfer characteristics shown in Fig. 7. Also referred to as the 1.5 bits/stage architecture, each stage 

outputs two bits of which one bit provides the redundancy used for correcting errors. The actual 

digital output for the ADC is obtained by adding together all the bits from individual stages. The 

radix < 2 and the RSD techniques are referred to as digital error correction techniques. 

As opposed to the correction approaches that preemptively avoid over-ranging or account for it 

through redundancy, "calibration" techniques can be used to measure the non-idealities in the transfer 

curve of the overall ADC and correct them after conversion. Self calibration techniques such as the 

ones proposed in [22], [25], and [26], among others, have been successfully used to improve the 

accuracy of the pipelined ADCs. 
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"V. 
residue 

-V 
ref 

F. 

ref 

m 

Figure 7. Ideal transfer characteristics for 1.5bits/stage ADCs using error correction 

Typical implementation of a stage 

As mentioned earlier, an MDAC provides the functionality of S/H, DAC, and gain in a pipeline stage. 

A typical implementation of an MDAC with a gain of 2 is shown in Fig. 5. In a pipeline ADC, a stage 

is usually followed by an identical stage. For such a case the kth stage is shown in sampling phase in 

Fig. 8(a). Since stage k+1 is in the amplify phase, its input capacitor network does not interact with 

stage k. At the end of sampling phase, the k* stage enters the amplify phase resulting in charge 

transfer from C2.k to Ci.k. The circuit for that phase is shown in Fig. 8(b). 

C 

(a) Stage k sampling, k+1 amplifying (b) Stage k amplifying, k+1 sampling 

Figure 8. Sampling networks of two consecutive MDACs in different stages of operation 
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While stage k is amplifying the input signal and creating a residue voltage at the output, stage k+1 

samples that residue signal. During this phase, ignoring the parasitic capacitances of the opamp, the 

load at the output of the opamp is given by [28] 

CL.„pamp = rLk ,r'k + (Cl.*+1 + C2.t+1 ) (3) 

I.k + I.k 

where CL.opamp is the total load at the output of the opamp. It is worth noting that the capacitors from 

stage k are in series [28] and, consequently, appear as an equivalent capacitor smaller in size than the 

smaller of either of CLk or C2.k . On the contrary, the terms in parentheses depicting the sampling 

capacitors from stage k+1 are in parallel and their sum contributes directly to the total load driven by 

the opamp. Power reduction techniques that exploit this dependence have been proposed [19] that 

scale down the capacitors from stage k to k+1. It was shown in [19] that the optimum scaling factor is 

approximately the interstage gain. For a 1-bit per stage, the interstage gain is 2 resulting in the 

nominal capacitor sizes getting halved every stage. For such a stage, if the capacitors C, and C2 of all 

stages are nominally equal, (3) reduces to give the load denoted by CUopamp.A as 

CL.opamp.A = ~+ (2 C) = 
2 '5C (4) 

If the capacitor in later stages are scaled by the interstage gain, i.e., 2, then (3) can be simplified to 

give the new capacitive load, CL.opamp.B as 

Q„„,=f+(C)=I.5C (5) 

The technique presented in chapter 4 presents a technique that eliminates the contribution of C,.k+, 

and C2.k+i in (3). The technique reuses the charge stored on Clk and also automatically scales of 

capacitors in a pipeline ADC by 2, as proposed in [19]. This reuse of charge through the sharing of 

capacitors between stages helps achieve even lower power dissipation. Consequently, the load seen at 

the output of the first opamp in the proposed technique can be written as 

Ç _ C|.A ' Q.fr 
L.opamp. prop ~ 

t-l.t + I.k 

If equal sized capacitors are used in stage k, the capacitive load seen by the opamp is given by 

= 0.5C (7) 
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Since the opamp in stage k in the proposed technique does not have any interaction with the input 

sampling network of stage k+1 the loading on the opamp remains the same. Assuming the loading 

due to comparators can be neglected, the reduction in capacitive load of the first opamp can then be 

found. The total loading seen in first two stages for the conventional and proposed techniques can 

provide insight in the potential power savings. Using (3), the total capacitive loading in two 

consecutive stages can be found and is summarized in Table 2 along with the load reduction with 

conventional approaches. 

Table 2. Capacitive load comparison for conventional pipeline and the proposed technique 

Architecture Capacitor Scaling Capacitive load Proposed technique's load reduction 
Conventional No scaling 5C 45% Conventional 

By 2 2.25C 44.44% 
Proposed Inherently by 2 2.75C N/A Proposed 

By 2 1.25C N/A 

Effect of noise in a typical gain stage 

Noise is a real-world phenomenon that can be the dominant factor for the maximum achievable 

performance of integrated circuits, including ADCs. The dominant noise sources are the thermal noise 

and the quantization noise. The thermal noise due to each capacitor C is given by kT/C where k is the 

Boltzmann's constant and T is the absolute temperature. For an m-bit/stage variant of the MDAC of 

Fig.5, the output noise power is given by [27] 

V ; = 2 " ~  (8) 

The effective number of bits (ENOB) for an ADC can be expressed in terms of its measured 

signal-to-noise ratio (SNR) as [29] 

ENOB = (9) 
6.02 

The ENOB in (9) calculation assumes a full-scale sinusoidal input and the SNR is the ratio of the 

power in the fundamental tone of the output and the noise power. This SNR measurement excludes 

the power in the harmonics of the fundamental. A more stringent definition of ENOB uses 

signal-to-noise-and-distortion ratio (SNDR) instead of SNR by including harmonics' power in noise. 

ENOB(SNDR) = S N D R ~ (  1 0 )  
6.02 
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Time-interleaved ADCs 

As the operating speed of flash and pipeline ADCs is increased, the power dissipation also increases. 

The higher power dissipation limits how fast the conversion can be performed. To enable higher 

performance than achievable by a single pipeline, Black and Hodges [30] proposed operating multiple 

ADCs in parallel. The concept of "time-interleaving" is shown in Figure. 9. The sample-and-hold 

(S/H) at the input of the structure samples the input. This sampled input is then passed to one of the 

parallel ADCs for conversion. For k parallel ADCs and the sampling frequency fs, each ADC operates 

at f/k instead of the full speed. This reduction in speed of individual ADCs helps to relax the 

specifications and requirements of the components of each ADC. The multiplexer at the output 

generates the digital stream by collecting the digital output from each ADC in correct order. An 

alternate way to look at the technique is to observe that if each individual ADC is capable of 

operating at a maximum frequency of fs, the overall conversion rate can be increased by a factor of k. 

Therefore, to get a higher conversion rate, multiple ADCs could be made to operate in parallel. This 

technique was utilized by Poulton et al. [31] to achieve an ADC system in GaAs operating at 

lGSamples/s. The same technique was utilized by placing successive approximation ADCs in parallel 

[32] and pipeline ADCs [33] in parallel. Poulton et al. [7] demonstrated an 8bit 20GSamples/s ADC 

in standard CMOS by time interleaving 80 pipeline stages. 

Analog Digital 
V v out 

k-S/H 
k-stages 

MUX 
S/H 

S/H 

S/H 

S/H 

S/H 

N-bit A/D converter 

N-bit A/D converter 

N-bit A/D converter 

N-bit A/D converter 

Figure 9. Time interleaved ADC structure 
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Although an attractive approach to increase the conversion speed of the ADC system, the time 

interleaved technique does have its issues. In [34] and [35], it was shown that mismatches among the 

paths result in tones in the frequency response of the system. In the presence of offset 

mismatchesamong k time-interleaved channels, frequency tones appear at the following frequencies 

in the output spectrum [36] 

/, • K, where K = 1,2,... k -1 (11) 

If the offset of a channel is assumed to be a random variable with normal distribution, zero mean, and 

variance a2, the resulting SNDR is then given by [36] 

SNDR = 20 • log 
< 1 ^ 

\°o J 
(12) 

In case of mismatches among gain ak of different channels, the distortion tone location and SNDR are 

respectively given by [36] 

fin + — • K, where K = \,2,...k-l 
k 

SNDR = 20 log 

f \ 
a 

-10 log 1 — 

(13) 

(14) 

where it is assumed that ak is normally distributed random variable with zero mean and variance a] • 

The third source of errors in time-interleaved structures is the timing mismatches among the channels. 

If this timing skew is assumed to be normally distributed random variable with zero mean and 

variance <7~, the output spectrum will have tones present in the response. These tones and the SNDR 

are respectively given by [36] 

fin + — • K, where K = l,2,...k-l 
k 

(15) 

SNDR = 20 • log 
1 

2a- / 
10 log 

in V 
1 - 1  

k j 
(16) 

For the technique applicable to pipeline ADCs presented in this work, the two capacitor networks 

used to sample the input could be viewed as the inputs of two time-interleaved ADCs. The mismatch 

between the two capacitor networks will result in the gain mismatches such as those associated with 
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the time-interleaved technique mentioned above. These mismatches as well as timing mismatches 

between two paths will result in tones in the output spectrum degrading the SNDR and ENOB of the 

ADC. These mismatches resulting in SNDR degradation will be a limiting factor in the maximum 

achievable resolution for the proposed technique. 

A capacitor sharing technique for RSD Cyclic ADC 

As explained earlier, pipelined ADCs can be used to convert an analog signal to digital by serializing 

the conversion operation. During a complete clock cycle, the residue from each stage is passed down 

to the next one to finish the conversion. This is achieved by replicating the same stage or modified 

copy of a stage resulting in more area and power consumption. For applications that require low 

power dissipations and small footprint, it is possible to take only one stage of an n-stage pipeline 

ADC and reuse it. If the residue from the stage is fed back to its own input, the ADC could perform 

the same conversion as the pipeline ADC but would require more cycles to perform one conversion. 

The ADCs that use this technique are commonly referred to as cyclic, algorithmic, or recycling 

ADCs. 

1-bit 
DAC 

1-bit 
ADC 

S/H 

Figure 10. Block diagram of a cyclic ADC 

The first implementation of the cyclic ADC principle was presented by Hornak [37] although the 

implementation was not completely monolithic. A monolithic cyclic ADC was presented by 

McCharles et al. [38]. The block diagram of a cyclic ADC is shown in Fig. 10. Traditionally, the S/H 

function is implemented using a switched capacitor circuit and the remaining function using another 

switched capacitor based MDAC. The MDAC is typically similar to or identical to the MDACs used 

in pipeline ADCs. Since the cyclic ADC is similar to a single stage of a pipeline ADC, its 

performance is also subject to the sources of errors described earlier for the pipeline ADC. 
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To overcome the comparator offset errors, it is possible to modify the ADC to use the error correction 

techniques described for the pipeline ADC earlier. Such an approach was presented by Ginetti et al. in 

[24]. In [39], Garrity and Rakers recognized that by using digital correction and eliminating the need 

of a dedicated S/H, the input S/H could be converted to a complete stage by adding another set of 

comparators and sub-DAC. This addition resulted in reducing the total conversion time for the ADC 

from n to n/2. In a further reuse of hardware, the same authors [40] shared the opamp as well as the 

comparators. The charge reusing technique described earlier in this chapter for pipeline ADCs can be 

extended and applied to cyclic ADCs. Such an extension [41] reusing the charge on a feedback 

network of capacitor in one cycle and reusing it in the next cycle is presented in chapter 3. 
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CHAPTER 2. CAPACITOR SHARING AND SCALING 
TECHNIQUE FOR REDUCED POWER IN PIPELINED ADCS 

A paper published in the Proceedings of the 

2005 Semiconductor Research Corporation TECHCON 

Saqib Q. Malik and Randall L. Geiger 

Abstract 

A technique for reducing power dissipation in pipeline Analog-to-Digital converters (ADCs) is presented. 
The technique stems from the observation that the amplifier of a given stage is also expected to perform 
the sample and hold operation by charging the input capacitors of the subsequent stage. At the end of the 
amplification phase, the feedback capacitor of the first stage holds the residue voltage and it can be 
directly used as the input signal to the next stage thus eliminating the traditional need for charging an 
additional input capacitor. This capacitor reuse reduces the total capacitance that a given stage must 
drive thus reducing the power requirements for the operational amplifiers. 

Introduction 

With newer process technologies to fabricate integrated circuits, the number of transistors that fit on a 

single die has roughly followed the Moore's law. The higher number of transistors has allowed more 

digital circuits to be realized on a chip resulting in high processing power. On the other hand, analog 

circuits do not scale as well and the technology scaling benefits have not been quite so dramatic. In 

order to utilize the available processing power on a chip, it is essential to convert the analog signals to 

digital. Analog-to-Digital converters (ADCs) form the bridge between the analog and the digital 

worlds. 

ADCs are used in a variety of energy sensitive applications such as mobile devices including mobile 

phones, personal organizers etc. Due to their dependence on batteries, much effort has been made to 

minimize the power consumption of these devices. Many techniques have been proposed to reduce 

the power consumption of the digital as well as the analog part of the systems that make up these 

mobile devices. The focus of this paper is to present a technique that can reduce the power 

consumption of the ADCs. 

Many architectures for ADCs have been presented over the years. Pipeline ADCs stand out for 

achieving high speed at high resolution. The block diagram of a pipeline ADC is shown in Fig. 1. The 
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Figure 1. Block diagram of (a) an n-bit m-bits/stage pipeline ADC (b) a single stage 

complete pipeline is subdivided into stages with each stage processing the signal from its preceding 

stage. Each stage may be designed to generate 1 or more bits per stage. The analog signal is applied at 

the input of the first stage. The stage has a sub-ADC that determines the digital bits for the stage. The 

digital bits are then used by a sub-Digital-to-Analog Converter (DAC) to add or subtract an 

appropriately scaled reference voltage from the input. An operational amplifier (opamp) then 

amplifies the signal and creates a "residue" voltage that is passed on to the next stage. Each stage 

repeats the process until the residue has been processed by the last stage. The distinguishing feature of 

the pipeline ADC is the pipelining, the property that it does not have to wait for a conversion to 

complete before starting a new one. Since each stage processes the signals independently of the 

following or the preceding stage, the first stage starts to sample the next input after it has passed on its 

residue to the next stage. The output bits corresponding to a specific Vin do need to be aligned in time, 

as shown in Fig. la. Furthermore, pipeline ADCs lend themselves to calibration algorithms [l]-[3] 

and correction techniques [4] that allow correcting of many common errors. 

A traditional pipeline stage combines the function of the DAC, amplification, and a sample-and-hold 

(S/H) for the following stage into one block, commonly referred to as the Multiplying DAC (MDAC). 

By observing that there is interaction between the MDAC of stage k and the input of stage k+1, the 

possibility arises of sharing the capacitors between two adjacent stages in order to save power. A 
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technique is presented in this paper that exploits the interaction of two stages to reduce the power 

dissipation in the MDAC of the first stage. Although the sharing can be extended throughout the 

pipeline, the first two stages generally consume more power than the subsequent stages and hence 

only those are considered for modification in this work. 

Operational amplifiers (opamps) are the major contributors towards the overall power dissipation in 

pipeline ADCs. In most opamp architectures used in pipelined ADCs, the opamp power dissipation is 

proportional to the capacitive load it must drive. In a typical MDAC based pipeline stage, the opamp 

must simultaneously drive its own capacitive feedback network as well as the capacitive sampling 

network of the following stage. In the proposed strategy, a portion of the feedback network is used as 

the sampling network of the subsequent stage thus eliminating the need to charge a separate sampling 

network and thus reducing the capacitive drive requirement of the opamps. 

The operation of a typical MDAC will be presented in Section II. Section III will describe the details 

of the proposed technique. 

Operation of a typical pipeline stage 

A typical implementation of the MDAC for a nominal 1-bit per stage pipeline ADC stage is shown in 

Fig. 2 [5], The two capacitors C, and C2 form the sampling network. The two non-overlapping clocks 

(pi and (fh are used to determine the sampling or the amplification mode of the MDAC. For the 1-bit 

per stage configuration and gain of 2, nominally C7=C2 and h=0.5. 

For the k"1 stage in the pipeline, the circuit operates as follows. When (j)] goes high, the sampling 

capacitors sample the input voltage. At the same time, the sub-ADC (not shown) compares the value 

of the input and generates an output bit dk. The digital bit, dk, is output and sent to the sub-DAC of the 

stage as well. The output of the DAC, VDAC is Vrcf or zero for a dk of 1 or 0, respectively. At the end of 

the sample phase, (f>i goes low and (/h goes high. The resulting configuration is shown in Fig. 3b. 

Charge is transferred from capacitor C2 to C; resulting in the residue voltage given by 

Vres.k 1+^ 
. C.y t-i 

While stage k is in the amplification phase, the stage k+1 is in sampling phase, as shown in Fig. 3b by 

the capacitors C,_k+1 and C2,k+i- By the end of <jh. the opamp output has settled to the residue voltage 
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Figure 3. Operation of a typical MDAC (a) Sampling phase (b) Amplifying phase 
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and the sampling capacitors of stage k+1 have now acquired the residue voltage. A key observation is 

that at this moment, Clik also holds the final residue voltage across its terminals. 

The proposed technique exploits the fact that the feedback capacitor, Ct_k, of the MDAC holds the 

residue signal at the end of the amplify phase. We propose re-using the charge stored on the feedback 

capacitor instead of re-sampling the residue on the capacitors of the next stage. To achieve this, CLk is 

implemented as a compound capacitor network (CCN) of capacitors and switches, as shown in Fig. 4. 

Each CCN is made up of two capacitors and two switches. For the case where it is desired to have 

C/=C2, each sub-capacitor is made to be equal to C/,/2. To use the CCN as a single capacitor, the 

control clock <j> is set to high placing the two capacitors in parallel. The equivalent capacitance seen 

between the top terminal, T, and the bottom terminal, B, of the resulting network is given by Cltk. 

When the control clock signal <f) goes low, the sub-capacitors become independently accessible 

through the terminals FB and DAC. The terminals FB and DAC connect to the next stage's opamp's 

feedback node and the VDAC respectively. 

In the proposed scheme, two CCNs are required for two consecutive stages. Two clocks, chA and 

chB, in conjunction with other control signals (not shown for simplicity), are used to choose 

appropriate capacitors CA or CB between two adjacent stages. The circuit uses clocks similar to those 

used in the traditional case and are shown in Fig. 5d. 

Proposed technique 

Operation 

<j> FB 
k 

Ck/2 

FB 

B o T B T 

&4C 

6 

Figure 4. Compound Capacitor Network (CCN) and its symbol 
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Figure 5. Structure of the pipeline with CCNs in different stages of operation 
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At the beginning of a conversion, the first stage is configured to use the CCN CA, as shown in Fig. 5a. 

With chA and ô/ high, CA appears to be a single capacitor and samples the input voltage with C2. With 

chA staying high, 0/ goes low and (jh goes high placing the first stage in amplification mode. 

Notice from the configuration of the circuit in this mode, shown in Fig. 5b, that the next stage is not 

connected to the output of the first stage's opamp at all. This is possible since the input capacitive 

network of the second stage has been eliminated. As a result, the capacitive load of the opamp is 

reduced by the total capacitance of the second stage's sampling network. 

By the time 0s becomes low, the appropriate residue voltage has been formed across CA. At the end of 

02, chA goes low and chB goes high. Simultaneously, (pi goes high placing the first stage in sample 

mode but using CB instead. This switching of CA into the second stage results in "unfolding" of the 

CCN. Consequently, when the clock (jh for the second stage goes high, CA is connected to the second 

stage's opamp such that it is identical to the topology of the stage in its traditional amplification 

mode. At the end of (fh, chA goes high again placing CA into the first stage. Similarly, CB is now 

moved to the second stage and the process is repeated. 

Advantages 

The proposed scheme has several benefits when compared to the traditional pipelined ADC. First, 

since the total capacitance that needs to be driven by the opamp is reduced, the power dissipation 

requirement of the opamp is reduced. It is well known that the capacitor sizes in a pipelined ADC can 

be scaled down as one moves towards lower LSB stages for reducing power dissipation [6] and area 

while still maintaining acceptable overall noise performance. With the sizing strategy described in the 

proposed structure, the capacitors are scaled by a factor of 2 when going from one stage to the next. 

This tapering of capacitor sizes provides acceptable noise performance and also provides for a 

reduction in overall power dissipation. Additionally, since the k+l!h stage does not need to have its 

opamp present to sample the residue from stage k, opamp sharing between stages k and k+1 can be 

used to further reduce the power requirements. Finally, if the opamp is not modified to reduce its 

power dissipation, faster speeds of operation become possible since the load seen by the opamp of 

stage k is reduced. 
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Figure 6. Simulation results showing the correct synchronized digital outputs for a ramp input 

Simulation results 

To validate the proposed technique, a simple setup was selected. The first two stages were 

implemented using the CCNs followed by two stages of conventional architecture. Each stage's 

capacitor sizes were designed for a gain of 2. Behavioral descriptions of circuit elements using 

Verilog-A were used for the opamps and comparators. The simulation results showing the 4 output 

bits for a ramp input are shown in Fig. 6. As can be seen, the circuit worked according to design 

demonstrating that the residues were formed and passed through the pipeline as desired. 

Conclusions 

A new technique to reduce the power dissipation in pipeline ADC was presented. In this technique, 

the feedback capacitor in the first stage is configured to serve as the sampling network of the second 

stage. This capacitor sharing reduces the capacitive loading on the opamp. Simulation results were 
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used to prove the soundness of the proposed technique. The technique has also been adapted to work 

in cyclic ADCs [7], 
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CHAPTER 3. A CAPACITOR SHARING TECHNIQUE FOR 
RSD CYCLIC ADC 

A paper published in the Proceedings of the 

2005 Midwest Symposium on Circuits and Systems 

Basem Soufi, Saqib Q. Malik, and Randall L. Geiger 

Abstract 

A new cyclic ADC structure based on capacitor sharing is presented. This technique reduces the die area 
of the capacitors in the switched capacitor network by up to 50%. As a result, the proposed scheme also 
significantly reduces the power consumption requirement of the operational amplifier. This is achieved 
while maintaining the thermal noise performance and conversion rate of the conventional structure. A 
10-bit, 2.3MHz cyclic ADC using the new structure is implemented in 0.5//m CMOS. Spectre simulation 
results of the new structure are presented. 

Introduction 

A proliferation of portable devices such as laptop computers, mobile phones, personal digital 

organizers and digital music players has occurred in recent years. Due to their mobility, portable 

devices are battery powered. Although the density of digital integrated circuits on a chip has roughly 

followed Moore's law, battery capacities have not scaled as dramatically. Consequently, power 

efficient architectures must be used in digital as well as mixed signal circuits such as the analog-to 

digital converters (ADCs). 

ADCs enable the processing of real world analog signals in the digital domain and are ubiquitous in 

modern portable devices. Of the many ADC architectures, cyclic (or algorithmic) ADCs have the 

ability to perform analog to digital conversion with minimum area and low power at low to moderate 

frequencies. Traditional implementations of cyclic ADCs [8] involve a sample-and-hold (S/H) 

structure along with a gain stage, comparator, and sub-DAC. The hardware is used to implement a 

form of the binary search algorithm which takes n cycles to produce n-bit digital outputs with a one 

bit/stage structure. Other architectures combine the Redundant Sign Digit (RSD) technique [9], which 

compensates for loop offsets, with the inherent S/H functionality in Switched Capacitor (SC) 

amplifiers to replace the S/H in the traditional implementation with another gain stage [10]. Hence, 

with the addition of another sub-DAC and comparison block, the number of cycles required to 
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produce n-bit digital output is reduced to n/2 cycles. Usually, each SC gain stage requires a separate 

operational amplifier (opamp); however, during the sampling phase of the SC amplifier, the opamp is 

not utilized. By capitalizing on this unused interval of the opamp, a single opamp can be shared 

between the two stages similar to what is reported in [11], We will refer to this structure as the 

'conventional structure' and discuss it further in Section II. 

Two key observations are made on the operation SC amplifier and two-stage cyclic structure. In [12] 

it is observed that the output voltage of a SC amplifier is actually held across its feedback capacitor. 

By treating this voltage as a "sampled voltage" for the SC gain stage, the need for an additional 

sampling capacitor can be eliminated [12]. The observation on the conventional two-stage cyclic 

structure is during the input sampling phase the second SC network capacitors are not utilized for a 

useful purpose. By utilizing the second stage capacitors in the input sampling phase, the technique of 

[12] is implemented in the proposed two-stage cyclic structure without having the drawback of 

alternatively sampling the input on different capacitors, as is the case in [12]. The proposed 

architecture automatically provides a limited degree of capacitance scaling similar to the concept of 

stage scaling of pipeline ADCs discussed in [13]. Hence, the new cyclic ADC is of smaller die area 

and power consumption levels than the conventional structures. The proposed structure is discussed 

in Section III. Simulations results are shown in Section IV. 

Conventional cyclic structure 

A conventional, two-stage RSD cyclic ADC structure [10] is shown in Fig. 1 where it is assumed that 

the full-scale input range is ±Vrel. A typical implementation of the SC network using what is 

commonly termed a 'flip-around amplifier' is shown in Fig. 2. It consists of two sets of capacitors 

CCIa, CClb and CC2a, CC2b, switches, and a single shared opamp. The conventional cyclic operation 

is illustrated in Fig. 3 showing the states the SC networks are switched to and their sequence. For 

every clock phase, the ADC executes the following recursive function: 

% + i  =  %  % ( 1 )  

where the index i denotes the ith conversion cycle after a sample is taken, V; is the ith residue voltage 

seen at the opamp output, i e [1, n-1], Vt = Vin, and Dj e [-1, 0, +1]. The value of D, x Vret-, the 

DAC output, is a function of the digits b0, bi which are the comparison results of V, against two 

reference values usually set at ±Vref /4 as shown in Fig. 1. The value of Dj is -1 if neither comparator 

is set, it is 0 if the lower comparator is set but the upper comparator is unset, and it is +1 
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if both comparators are set. For the switched-capacitor implementation shown in Fig. 2, V, (the input 

voltage Vin) is sampled on the capacitor pair Cla, Clb at the start of the conversion. In subsequent 

conversion clock phases, the residue voltage is alternatively sampled on capacitor pairs C2a, C2b and 

Cla, Clb respectively. The signed codes b0, bi generated at the end of each clock phase are 

synchronized (simple multiplexing), transformed to binary, and then digitally corrected (simple 

digital addition) to give the final n-bit output digital word. Notice that only n-1 residue voltages are 

required to calculate the n-bit digital word that represents the sampled input voltage Vin. The 

following observations are made: 

1) The residue voltage is held across the feedback capacitor: 

In flip-around SC amplifiers, the residue voltage is impressed on the feedback capacitor. This fact 

suggests the use of the feedback capacitor in the SC amplifier as the sampling capacitor for the 

residue voltage. Therefore, no sampling capacitance is needed at the output of the SC amplifier. 

Amplification of the output voltage by two can take place by simply switching half of the feedback 

capacitor to form the flip-around structure [12J. 

2) The final residue amplification is not required: 

In the conventional cyclic operation shown in Fig. 3, the last residue voltage generated by CC2a, 

CC2b and the opamp in the nth cycle is not utilized, because CCla, CClb, are sampling the input 

voltage. This suggests the idea of using CC2a, CC2b as well as the opamp for other purposes. If 

needed, the opamp can be configured for offset cancellation. A new structure, motivated by these two 

observations, is presented the following section. 

Proposed cyclic structure 

The proposed SC structure's states and their sequence, which implement the same recursive function 

of (1), are shown in Fig. 4. In the 'Initial State' the capacitor pair C2a, C2b and the capacitor pair 

Cla, Clb both sample the input voltage. At the start of the next state 'State X', the pair C2a, C2b are 

switched together to form one feedback capacitance for the first residue amplification, while 

connecting the Cla, Clb pair to DAC1 voltage which is by the comparison result of the input voltage 

sampled in the 'Initial State'. Since the pair C2a, C2b hold the value of the residue voltage when in 

'State X', amplification during 'State B' can take place by simply connecting C2a to the output of the 

DAC2 voltage which is determined by the comparison result of the residue voltage of 'State X'. 
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Since the capacitor pair CIa, Clb is not needed for amplification during 'State B\ these capacitors can 

be used to sample the residue voltage at the amplifier output. This process can then be repeated by 

alternating between 'State B' and 'State A' until the end of the conversion is reached. The SC 

networks are then switched back to the 'Initial State' from 'State A' to start a new conversion. The 

final SC networks for the proposed structure along with the required clocks are shown in Fig. 5. The 

difference between the proposed structure and the conventional structure is in the elimination of the 

extra sampling capacitance during the second step (the first 'State A' in the conventional case and 

'State X' in the proposed structure). This difference has a significant impact on overall performance, 

as will be discussed in the following section. 

A. Benefits of the proposed structure 

The performance of a switched capacitor amplifier is dominantly determined by the size of the 

capacitors and it is this size difference that offers advantages for the proposed circuit shown in Fig. 5. 

It is well known that the capacitor size in a pipelined ADC becomes increasingly less important as 

one moves from the MSB stages to the LSB stages in the pipeline. Both reduced matching 

requirements and reduced effects of kT/C noise contribute to this relaxation in requirements. It was 

observed in [13] that an optimum capacitance stage-scaling factor for a pipeline ADC exists and is 

approximately equal to reciprocal of the interstage gain. Although aggressive capacitor scaling is 

practical in a pipelined architecture, capacitor scaling in a cyclic structure becomes temporal rather 

than spatial and circuit overhead makes it more difficult to take full advantage of capacitor scaling in 

a cyclic structure. But even in a cyclic structure, significant power and area benefits can be derived 

with appropriate capacitor sizing and scaling in the first one or two conversion cycles. However, if 

capacitor scaling is used in a cyclic structure, making the temporal capacitor scaling factor equal to 

the reciprocal of the interstage gain should give near optimal performance for the cyclic structure as 

well. Since a 1-bit per clock-phase cyclic structure has a nominal interstage gain of two, good 

performance should be obtained if the capacitance from one stage to the next is decreased by a factor 

of 2. The proposed structure scales the sampling capacitance by a factor of 2 from the 'Initial State' to 

'State X'. The same kT/C noise performance at sampling input is maintained when comparing the 

proposed structure of Fig. 5 with the conventional structure of Fig. 2. This is true as the capacitors in 

the two circuits will be related by the expressions Cla+Clb=CCla and C2a+C2b=CClb. Table 1 shows 

the opamp's capacitive loading in each state for both the conventional circuit and the structure of Fig. 

5 assuming that all of the conventional and proposed structures' capacitors are equal to ' 1C and 
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'0.5C' respectively, where C is an arbitrary unit. Note that the maximum capacitive load of the 

proposed structure has been reduced by a factor of 2 from '2.5C' to '1.25C' and it is this reduction in 

total capacitance that not only provides an area reduction for the layout of the capacitors but a 

significant power reduction in the design of the operational amplifier when the resolution of the cyclic 

structure is large as well. A fairer comparison may involve scaling the capacitors CC2a and CC2b to 

'0.5C' each. However, even with this scaling, the opamp will still be required to drive a maximum 

load of '2.25C' in 'State B' for the conventional sequence of Fig. 3. On the other hand, the opamp in 

the proposed structure would still only need to drive a maximum load of ' 1.25C'. Using a first-order 

opamp model, it can be shown that this results in a 44% reduction in this dominant power-consuming 

component. It is more common to have all of the capacitors of the conventional implementation 

equal, and hence a 50% power reduction is more realistic. The energy savings does depend on the 

architecture of the opamp and circuit parasitics such as the ON-resistance of the switches and 

parasitic capacitances. If these effects are included, the energy savings will be reduced but significant 

benefits would still be obtained. Unlike the pipeline structure in [12], the proposed 2-stage cyclic 

structure samples the input voltage on the same set of capacitors at start of every conversion. Hence, 

every conversion will suffer consistent gain errors and therefore the proposed structure of Fig. 5 will 

not introduce a new source of harmonic distortion as in [12]. 

B. Design Issues 

In the proposed SC switching sequence, 'State X introduces two series switches in the signal path in 

the SC network. This suggests an increase in the time constant of the opamp in this state. However, as 

indicated by Table 1, the loading of the opamp is reduced by a factor of five over the conventional 

implementation and this compensates for this effect well enough to make settling of 'State X' in the 

implemented ADC faster than 'State A' and 'State B'. Another design issue was the switching 

complexity of the proposed structure. However, as shown in Fig. 5, dummy switches were added to 

simplify clocking while having better layout matching for the capacitors. 

Table 1 Capacitive loading comparison 

Structure Initial State State X State B State A 

Conventional 0.5C N/A 2.5C 2.5C 
Proposed 0 0.5C 1.25C 1.25C 
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Implementation and simulation results 

The proposed structure was used in the design of a 10-bit, 2.3MHz cyclic ADC in a 0.5|i CMOS 

process. The opamp architecture is a cascode-cascade structure for high gain and large signal swing. 

The comparators are dynamic comparators for lower power consumption. The sampling switches are 

bootstrapped to accommodate the input signal swing. Spectral simulation results are shown in Fig. 6. 

Although not shown, the ADC demonstrated complete 10-bit performance for low frequencies and for 

frequencies up to near the Nyquist rate. The thermal noise and mismatches of circuit devices are not 

incorporated in the simulation results presented. 
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Figure 6. Reconstructed simulation spectrum of lOOKHz sinusoidal input signal 

Conclusion 

A new cyclic ADC structure that is built upon a conventional two stage RSD cyclic ADC with a 

shared opamp was introduced. The new structure can reduce the total capacitance by up to 50% and 

reduce the capacitive loading on the opamp by 50% as well thus resulting in a reduction of the opamp 

power consumption and a reduction in the area needed for the capacitor layout. This reduction in 
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capacitance and power was achieved while maintaining the same SNR and conversion speed 

performance of the conventional implementation. 
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CHAPTER 4. A LOW TEMPERATURE SENSITIVITY 
SWITCHED-CAPACITOR CURRENT REFERENCE 

A paper published in the Proceedings of the 

2001 European Conference on Circuit Theory and Design 1 

S. Q. Malik, M. E. Schlarmann, and R. L. Geiger 

Abstract 

A current reference with low temperature sensitivity based on a switched-capacitor technique has been 
developed. The implementation is targeted for a 0.18p. CMOS process. HSP1CE simulations using level 49 
models valid over a wide temperature range were used to verify the design. The simulation results predict 
variations of less than 0.029% over a temperature range of -40 °C to 125 °C. 

Introduction 

Current references are needed in many analog signal processing applications including operational 

amplifier (opamp) and data converter bias circuits. These applications often require a reference 

current with low temperature dependence. 

Unlike voltage references that can be derived from intrinsic physical values of the process, no 

intrinsic current reference is available in CMOS [1], As a result, reference currents are often obtained 

by applying a temperature stable voltage (obtained from a voltage reference) across a resistor. The 

resistor is either integrated on-chip or may be supplied off-chip for improved control over 

temperature characteristics. However, both cases have drawbacks. On-chip resistors typically exhibit 

large temperature dependence while off-chip resistors are often not a feasible option for many 

applications due to cost and area considerations. This work circumvents the need for an accurate on-

chip resistor by using a switched capacitor technique to generate a temperature independent current. 

The previous work in the area is briefly surveyed in section 2. The newly proposed structure is 

introduced in section 3. Design considerations and modifications to handle certain requirements are 

detailed in section 4 while simulation results are presented in section 5 followed by conclusions.1 

1 Held in August 2001 at Helsinki University of Technology (HUT), Espoo, Finland. 
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Background 

Approaches that use a resistor to generate a temperature independent current reference have been 

reported in [l]-[3]. Due to the large temperature coefficients of polysilicon and well diffusions, 

monolithic resistors exhibit large temperature dependence. To overcome this problem, resistorless 

architectures have also been developed [4][5]. Integrated capacitors can be fabricated with greater 

precision and exhibit significantly lower temperature dependence than integrated resistors. Therefore, 

switched capacitor methods of generating temperature stable currents have emerged [6]-[8J. This 

paper presents a current reference using switched-capacitor based circuit to deliver and maintain a 

stable current. 

Current reference architecture 

Precise crystal-based clocks and temperature independent voltage references are commonly available 

on-chip. Given that fact, a temperature stable current can be developed using a switched capacitor 

technique. The concept involves periodically dumping a fixed amount of charge onto a circuit node 

whose time-average value is held fixed by a feedback network. 

The circuit operates as follows, (j), and <t>2 are non-overlapping clocks of frequency fclk. The amplifier 

is assumed to have a single pole response. Its speed (unity gain frequency) is intentionally set very 

ref out 

ss 

Figure 1 : Proposed current reference 
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low so that it is fast enough to respond to temperature variations yet slow enough to be unable to 

effectively respond to signals operating at the clock frequency. During (j^, C, charges to Vref. During 

<)>2 the charge on Q is dumped onto node 1. The instantaneous change in voltage on node 1 due to this 

charge is given by 

where V, is the voltage on node 1 immediately preceding the charge transfer, as shown in Fig. 2. The 

amplifier responds to the low-frequency component of the signal on node 1. Over time, it adjusts the 

bias on M, so that the time average value of the signal present on node 1 is zero. In steady state, the 

signal on node 1 looks like the one shown in Fig. 2. It is a sawtooth type waveform centered about 

zero. The sawtooth shape arises due to the steady charging of M, interrupted by the periodic charge 

transfers from the switched capacitor network. The peak-to-peak magnitude of the signal is given by 

(1). Since it is centered about zero, the voltage on node 1 just prior to the charge transfer, Vh is 

approximately given by 

(1) 

(2) 

AV = V, - V2 

V 

1 j 

Time (s) 

Figure 2: Voltage at node 1 of Fig. 1 
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Substituting (2) into (1) and solving for AV yields the peak-to-peak magnitude of the ripple on node 1 

in terms of fixed parameters. This AV is given by 

AV --
2 q 

v Q + 2Cj 
•V ref 

(3) 

Thus, the ripple on node 1 can be controlled via the ratio C2/C\. A large C2 results in reduced ripple at 

the expense of increased die area. The current delivered by the switched capacitor network is 

approximately given by 

I ref ' Vref ' f elk (4) 

Due to process variability, the actual post-fabrication value of the current can exhibit significant 

deviation from the designed value. However, due to the low temperature coefficient of monolithic 

capacitors, for a given die the current should remain relatively constant over temperature variations. 

Design considerations 

Design choices affect the transient startup time, the amount of output ripple, and the stability in 

presence of a temperature dependent load. To help the designer make intelligent tradeoffs, each of 

these issues is discussed in this section. 

Increasing the output resistance 

Due to the finite output impedance of M2, some temperature dependence is introduced if the drain 

voltage of M2 is allowed to vary. This is an especially important issue if the load is temperature 

dependent. To address this issue, output impedance enhancement may be required. One possible 

method, the regulated cascode, is shown in Fig. 3. In less sensitive situations, standard cascoding may 

suffice. Note that in Fig. 3, drain voltage of M2 is fixed at OV thereby facilitating accurate current 

mirroring of the reference current. Cascoding not only improves the output resistance of the current 

reference but also reduces the sensitivity to supply voltage variations. 

Hold capacitor and ripple 

Since the amplifier is intentionally made slow, it attenuates the high-frequency components of the 

signal present on node 1. However, its response is not zero at those frequencies. Consequently, some 

ripple will be present in the output current. Fortunately, the magnitude of the ripple can be managed 
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Figure 3: Proposed circuit with improved output resistance 
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Figure 4: Proposed circuit with filter 
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Figure 5: A simple 2nd order filter using MOSCAPs 

by controlling the ratio C2/C, and the gain-bandwidth product of the amplifier. Reducing the gain 

bandwidth product of the amplifier will result in less output current ripple but it will also affect how 

fast the system will respond to temperature changes. Since temperature changes are generally low 

frequency in nature, reducing the speed of the amplifier is acceptable but it will extend the length of 

the transient startup period. 

For applications with very low ripple requirements, a filter can be inserted as shown in Fig. 4.  A 

simple filter such as one shown in Fig. 5 can be used. Since precise filter characteristics are not 

required in this application, capacitors can be implemented as MOSCAPs [9] and resistors can be 

implemented using triode region transistors. 

Improving the settling time 

As previously mentioned, the opamp was intentionally made slow in order to reduce the ripple 

present in the output current. The inevitable consequence of this choice is a longer time for the output 

of the opamp to settle to its final value. The long settling time has a major impact on the amount of 

time it takes for the circuit to start up. Once locked to its final value, the output should track slow 

changes in temperature. 

In applications that require faster startup, the proposed circuit can be modified to achieve that without 

increasing the output ripple by including the filter (as shown in Fig. 4) and increasing the 

gain-bandwidth product of the amplifier. 

Simulation results 

The circuit of Fig. 1 was simulated using HSPICE with level 49 models for a O.ISj j. CMOS process. 

The models were valid from -40 °C to 125 °C. By using a clock frequency of 20MHz, a Vrcf of 

1,25+Vss, and a Ci of 0.25pF, a reference current Iref of 6.25pA was expected. Since a single-pole 
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Figure 6: Average output current vs. Temperature 

behavioral model was used to model the opamp, the possible temperature dependence of the amplifier 

is not represented in the results. Furthermore, since models for the temperature variation of poly-poly 

or metal-metal capacitors were not available, C, was modeled as temperature independent. However, 

the temperature dependence of these capacitors is expected to be small in practice. 

The circuit was simulated at several points over a temperature range from -40 °C to 125 °C. As 

shown in Fig. 6, the current is very stable over the entire temperature range. The maximum deviation 

from the midpoint current value is 0.029%. 

The actual value of the current obtained was approximately 6.88)JA instead of 6.25(iA. The reason for 

this discrepancy is the non-ideal nature of the virtual ground established at node 1 of Fig. 1. As shown 

in Fig. 2, the voltage at node 1 is non-zero despite having an approximate average value of 0. As 

mentioned in section 4.2, increasing the size of capacitor C2, i.e., the ratio Ci/C,, can reduce the 

voltage change on node 1. As the ripple on node 1 becomes smaller, a more accurate charge transfer 

from C, to C2 takes place and the reference current approaches its intended value. 
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Conclusions 

A new temperature stable current reference was developed. The proposed circuit uses switched 

capacitor technique to establish the reference current. Simulation results show that the output current 

varies less than 0.029% over a temperature range of -40 °C to 125 °C. 
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CHAPTER 5. AREA EFFICIENT LAYOUT STRATEGIES FOR 
EXTREME-RATIO MOS TRANSISTORS 

To be submitted 

Saqib Q. Malik and Randall L. Geiger 

Abstract 

Several different layout schemes that are useful for implementing extreme-ratio low resistance switches 
with MOS transistors are discussed and characterized. A comparison of the area required for 
implementing a switch with a standard alternating bar approach is made with layouts using waffle 
structures, zipper structures, hexagonal structures, and new modified waffle structures. Simple analytical 
design equations for these non-conventional geometries are introduced. Comparisons show that in typical 
processes, area reductions of over 40% are readily achievable with the modified waffle structures. 

Introduction 

The effective resistance of MOS transistor operated as a switch is characterized by several 

parameters. The four that generally receive the most attention are the transistor width-to-length ratio, 

W/L, the excess bias, the series diffusion resistance, and the contact resistance. For MOS transistors 

used as switches that must achieve extremely low on-resistances, large effective W/L ratios are used 

along with multiple contacts to the drain and source diffusions. We refer to such transistors as 

extreme-ratio devices. 

For most layouts of such devices, the total resistance of the switch can be expressed as the sum of 

three resistances. One termed Rfet, represents the "on" resistance associated with the channel of the 

transistor itself and is determined by the effective W/L ratio of the MOSFET and the excess bias 

voltage. A second, termed Rvia, is due to the contact resistance to the drain and source diffusions of 

the switch. The third, termed Rdiff, is due to the series resistance in the diffusions between the edge of 

the channel and the contacts. The resistance associated with the metal interconnects is generally 

negligible compared to these three resistances. Thus, a single-transistor MOS switch can be modeled 

by a resistor expressed as 

R
W

= R F E T + R v , a + R d i f f  G )  



www.manaraa.com

47 

a 

L 

El 

d [  

El 
(a) (b) 

Fig. 1 (a) Typical Layout, (b) An irregular transistor 

For the simple MOS switch driven on with a control voltage of VDD and with the layout shown in Fig. 

la, it follows from the simple square-law device model that the three parts are approximately given 

by 

R  FIT  

1 

M^ox 

R. 

Rdiff 

L 

a + b 

• ( V D D - V T )  

R 
SCI 

w 

(2) 

(3) 

(4) 

where |X is the mobility of carriers in the channel, C0x is the gate oxide capacitance density, VT is the 

threshold voltage of the MOSFET, Rcont is the contact resistance, and Rsq is the diffusion sheet 

resistance. For a near minimum-sized n-channel transistor in AMI 0.5p. process with W = L, a = b = 

2-W, Rsq = 5Q/D, gC0x =H8|J, A/V2, VT = 0.8V, VDD = 3.3V and Rcom = 55Q, the total switch 

resistance as comprised by the three parts of (1) becomes: 

R =3390+110 +160 = 3660 £2 (5) 
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The contributions due to Rvia and Rditf thus represent about 3% and 44% of the total resistance 

respectively. It can be concluded that for this simple structure, the contact resistances and the 

diffusion resistances are negligible. On structures with very large W/L ratios, the term RFET can be 

driven to an arbitrarily low value. Correspondingly, with most common layout schemes, multiple vias 

will be made to contact the diffusions thus driving Rvia and R^f down as well. With a little care in 

layout, these two resistances will scale approximately linearly with RFET thus keeping their 

contribution to Rsw negligible. For this reason, throughout this paper, the contributions to the total 

resistance due to the last two terms in (1) will be neglected. 

Some applications require switch resistance in the few ohms range or even smaller. From (2), it is 

apparent that extreme (very large) effective W/L ratios are required to achieve this. For example, a 

switch with an on-resistance of 1 Q would require an effective W/L ratio of about 3400 in the typical 

process referenced above. The silicon area implications associated with such an extreme-ratio 

transistor are significant. Correspondingly, a MOS transistor with an actual rectangular layout and an 

aspect ratio of 3400:1 would not be practical. The large effective W/L ratio is generally achieved by 

using a serpentined layout structure in which the MOS transistor is folded to make the aspect ratio of 

the footprint of the MOS transistor reasonable or even nearly square. A standard variant of the 

serpentine that can further reduce the area of the overall transistor footprint is based upon using 

alternating bars of source and drain diffusion that are shared and interconnected. Such a layout 

scheme is shown in Figure 2. 

• • • • 
#•«•1 
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Fig. 2: (a) Alternating bar, (b) Reference cell 
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Significant improvement in area efficiency over what is achievable by the serpentined structure or the 

alternating bar structure is possible by judicious selection of alternative but less popular layout 

schemes. These alternative layout schemes can offer economic benefits where substantial portion of a 

design is devoted to switches that must have low on resistance. In addition, these alternate layout 

schemes typically have less gate capacitance for a given effective W/L ratio. This reduces the 

capacitive loading and correspondingly the speed of circuits driving these switches while 

simultaneously reducing the dynamic power dissipation in the switches. Several alternative layout 

schemes will be discussed after developing a method for comparing alternative layout structures. 

Layout comparison method 

Most layouts of extreme-ratio transistors are based upon attempts to replicate not just the large W/L 

ratio of the transistor but also the rectangular aspect ratios of the transistor. The layout methods 

discussed here will not be based upon any attempt to preserve a rectangular gate region for the 

transistor. It has been shown [1] that corresponding to any arbitrary shaped device that has two 

disconnected diffusion regions separated by a channel region, there is a rectangular MOS transistor 

that has the same de I-V characteristics. This equivalence is depicted in Fig. 1 where the dark region 

in Fig. lb denotes the channel region of an arbitrarily-shaped transistor, dt and Sj denote the 

disconnected diffusion regions that serve as the drain and source of the arbitrarily-shaped transistor, 

and d] and S\ denote the corresponding drain and source regions of an equivalent rectangular 

transistor. For notational convenience, we will refer to the W/L ratio of a corresponding rectangular 

transistor as the "effective W/L ratio", (W/L)elr, of the arbitrarily shaped transistor. In the proof of the 

existence of the rectangular transistor with an equivalent W/L ratio, another useful result that will be 

used later in this paper was obtained. Specifically, since the regions denoted by d2 and s2 in Fig lb are 

also disconnected, they can likewise be used to form the drain and source of a second arbitrarily-

shaped transistor which we will term the reciprocal transistor to the original device. The same 

theorem thus guarantees a second equivalent rectangular transistor and it was shown that this 

transistor has an effective W/L ratio that is the reciprocal to that of the rectangular transistor in Fig. 

lb. Thus, the reciprocal transistor for the original arbitrarily-shaped transistor has as an equivalent 

rectangular transistor that is the reciprocal transistor for the original rectangular transistor. This is also 

depicted in Fig. 1. Thus, the effective W/L ratio of a reciprocal transistor is the reciprocal of the W/L 

ratio of the original transistor. 
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In what follows, it will be seen that there are substantial area benefits associated with non-rectangular 

transistors when large effective W/L ratios are required. The effective utilization of layouts that are 

not based upon rectangular transistors requires a systematic procedure for determining the effective 

W/L ratio of nonrectangular structures along with the corresponding area. If the periphery effects are 

neglected, we will see in what follows that all extreme-ratio structures that will be considered can be 

represented by the parallel interconnection of an arbitrary number of smaller structures. These smaller 

structures will be referred to as reference cells. We will characterize the effective W/L ratio and the 

area of the reference cells and then extend these results to obtain the effective W/L ratio for the 

overall structure by connecting n of these references cells in parallel. 

If Rdes is the maximum acceptable resistance of a switch then, if via and diffusion resistances are 

neglected and it is assumed we are interested in extreme ratio switches so that the periphery effects of 

the cell are negligible, the number of reference cells, n, and the area needed to achieve this resistance 

are given by the expressions 

where the function intL(x) denotes the smallest integer greater than x, Rref is the resistance of the 

reference cell and Aref is the area of the reference cell which includes any drain/source diffusions and 

interconnect spacing needed for the reference cell. Since we are interested in large ratios of Rref/Rdes, 

An accurate determination of the resistance of a switch is strongly dependent upon the model used for 

the device. Although it is often argued that the square-law model is not adequate for accurately 

predicting the resistance of a switch, the relative value of the resistance of a rectangular device and 

the resistance of a nonrectangular device is not strongly dependent upon the difference between the 

square law model and the much more complicated and widely-used BSIM model. Thus, for notational 

convenience, throughout this paper it will be assumed that the square-law device model can be used 

n = int 

(6) 

(6a) 
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when a transistor is operated deep in the triode region. It thus follows from the square-law device 

model that the resistance of the reference cell is given by the expression 

R„, = 7^! m 
W z \  

MCnX ' ~T~ ' (V 1)1) ~ VT ) 

where (W/L)eff is the effective W/L ratio of the reference cell. From (6a) and (7), it follows that the 

normalized reference area, Aref-n, defined by 

« >  

I ^ /«f 

is a figure of merit for comparing the area efficiency of different layout structures since the total area 

is proportional to Aref n. Reference cells with smaller values of Aret;n, will require less total area than 

reference cells with larger values for this metric. 

Knowledge of the capacitances associated with the transistor for a specific layout structure is also 

important for complete characterization of the structure. This information is particularly useful since 

existing extraction tools will not be able to accurately extract the parasitic capacitances in highly 

irregular transistor structures. A good approximation to these capacitances can be obtained by 

knowing the actual gate area, the actual drain and source area, and the actual drain and source 

perimeter. Parameterized expressions that are applicable in an arbitrary technology for (W/L)eft, Aref, 

Aref.„, as well as the gate area and the diffusion area and diffusion perimeter for the drain and source 

diffusions of the reference cell for several different area-efficient layouts will be presented in the next 

section. The corresponding total gate capacitance as well as the drain and source diffusion 

capacitances for large-ratio switches can be obtained by multiplying the appropriate derived values 

for the reference cell by n. 

Layout structures 

Several different layout structures will be discussed in this section. The switch area efficiency for a 

given layout structure is dependent upon the minimum allowable feature sizes as characterized by the 

design rules of the process. The design rules that impact area efficiency of a switch layout are denoted 
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by d,...d7 in Table 1. The typical value for these parameters forX-based design rules are also given in 

the table. 

In what follows, dark grey is used to represent polysilicon and light gray to represent diffusion 

regions. Solid squares are used to denote drain contacts and dotted squares are used to denote source 

contacts. All polysilicon is assumed connected to form the gate of a transistor. Likewise, all 

diffusions with source contacts are assumed connected together to form the source of the switch and 

all drains are connected together to form the drain. For notational convenience, all structures are 

shown without metal interconnects. In this section, emphasis will be placed on characterizing only the 

reference cells for a given layout, that is, all periphery effects will be ignored. This assumption is 

reasonably good for extreme-ratio switches but the periphery effects will play a significant role if 

extreme ratios are not needed. The periphery effects will be considered in the next section. 

Table 1: Typical MOSIS design rules for MOS switch layouts 

Rule (minimum) Name X-based rule 
Poly Width d, 21 
Diffusion Width d2 3X 
Contact Opening 2Xx2X 
Contact-Poly Spacing 2X 
Diffusion Overlap of Contact d5 1.5k 
Contact-Contact Spacing df) 2X 
Poly-Poly Spacing d? 2\ 

Alternating Bar structure 

The widely used alternating bar structure is shown in Fig. 2a along with a reference cell for this 

layout. The structure is characterized by the parallel interconnection of multiple instantiations of the 

reference cell which is expanded in Fig. 2b. The area, (W/L)eff and Aref,n for this reference cell are 

given respectively in terms of the design rules by: 

At/i -2(^3 + d6)-(d]  +d3 +2d4) 

f  i x r  \  
=  2 -

d-,+d. 

re f .n l  
:  dx  • (tifj + tif3 + 2<5?4 ) 

(9) 

(10) 

(11) 
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For the alternating bars reference cell, the gate area and the drain and source diffusion areas are given 

by 

Agalei —2-d l  {d3 + db) 

Adi[f\ =2(d3 + d6\d3 +2dJ 

(12) 

(13) 

To find the perimeter of the diffusion region for a given reference cell, we will assume that the 

reference cell is surrounded by similar reference cell. The diffusion perimeter is then given by 

Pdi[f\ ~ 4(^3 + ̂ 6 ) (14) 

Waffle structure 

The waffle structure is shown in Fig. 3a. with a reference cell shown in the center of and expanded in 

Fig. 3b. This structure is well known [2]-[8] and is similar to the structure used in vertical power 

MOSFETS [3], For this reference cell, (W/L)eff is not readily attainable directly but from results in 

Section II, the equivalent W/L ratio of the reciprocal transistor can be obtained and by taking the 

reciprocal of this, the W/L ratio of the desired transistor is attained. In obtaining the W/L ratio of the 

reciprocal transistor, a 90° angle in the channel is encountered. As is often done when calculating the 

number of squares in a resistive region, the approximation of using 0.55 W/L units for the 90° bend in 

1 f""""I 

1 : I • 

(• 
_____ 

1 
: : • 

Fig. 3: (a) Waffle structure (b) Reference cell 
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the channel was used. The effective area and an estimate of (W/L)eff for this reference cell are given 

respectively by: 

A f / ' 2  = 2 • (t if ,  + + 2d4 )' (15) 

wx _ 2 2(^3 + 2J4)+0.55J1 

^ Jeff! 

The normalized area of the reference cell is given by 

_ d l  • (dj + d3 + 2d4) (17) 

2(^ + 2(f4)+0.55^ 

Similarly, the gate area, and the diffusion area and perimeter of the drain and source regions for the 

waffle reference cell are given by 

A
g a t e2

=2-d l{d]+2d3+4d4) (18) 

^dijfl = 2(^3 + 2tif4) (19) 

Rdiff 2 = + 2ûf4 ) (20) 

Zipper structure 

The Zipper structure is shown in Fig. 4a. The reference cell depicted in the center of Fig. 4a.is 

expanded in Fig. 4b. For this reference cell, (W/L)eff is not readily attainable directly but using the 

reciprocal transistor approach as outlined earlier, the area, an estimate of (W/L)efr, and Aret n for the 

reference cell can be readily obtained. They are given respectively by: 

A?/3 = 2 •{d l+d2 )((x + 3) • d l  + d3 + 2 d4 ) (21) 

_ 0 {2A-d l  + d2+x-d1) ^2) 

V ^ Jeff 3 d\ 

_ d l  •{d l+d2)({x + 3)-dx+d3+2d4) 

The parameter x shown in Fig. 4b is a degree of freedom that can be used to characterize the depth of 

the fingers. For x = 0 , (23) reduces to 
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• un • 

Fig. 4: (a) Zipper Structure (b)Reference cell 

A 
d\ • {d l  + d7 )(3Jj + d3 + 2d4 ) 

2.1-flf, + d0 

The deep zipper structure is obtained by increasing the depth of the fingers to x = 2. With this change, 

we obtain 

A._ l re f .n3  

é/j  • (d\ + d2 )(5J] + d3 + 2d4 ) 

x-2 4.1 • dx  + d2 

(24) 

The infinitely deep zipper structure, obtained by making the fingers arbitrarily long, (i.e., letting 

approach infinity) is characterized by 

] i m A r e f . n3=di-(di+d2) (25) 

From a practical viewpoint, the depth of the fingers is limited since deep fingers will add considerable 

series resistance in the drain and source regions. Depending on a given process, when x gets much 

beyond 2 or 3, the series diffusion resistance can start to become a significant portion of the overall 

resistance thus negating further reductions in switch impedance by making the fingers deeper. 

The gate area and the diffusion area and perimeter required to find capacitance for the reference cell 

are respectively given by 

\au-i -2-d l{(x + 3)d]  +d2) 

A/#3 =  2 - [ (^i +d2) ( d 3  +  2 d 4 )  +  2 - ( x  +  2 ) - d l  d 2 ]  

P d i f f i  =  4 [ ( x  +  3 ) c / l  + d 2 ]  

(26) 

(27) 

(28) 
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Star Zag 

The Star Zag structure is shown in Fig 5a and the expanded reference cell for this structure is shown 

in Fig.5b. , It can be shown that the area, effective W/L, and the normalized area for the star zag 

structure are given respectively by 

4^4 = 2 (4d, + 2d, ) - (3d, + 3d, ) (29) 

(30) 'W) _ 16.6 J, +\0d2 

. ^ Jeff A 

_ dx  •{4d i  +2d2)-(3d1+3d2) 

8.3^+5^, 

The gate area and the diffusion area and perimeter for the Star-Zag structure are given by 

^ 4 = 2 ' ^ ( l W i + 5 ^ )  ( 3 3 )  

Adi f f4 = M + 2d2 Y +d2 (9 d{  + 2d2 )) (34) 

^4 = 2(22^+10^) (35) 

•• •! 

l,Bi 

Fig. 5: (a) Star Zag structure (b) Reference cell 
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Fingered-Waffle 

The diffusion regions of the waffle structure, shown earlier, can be extended to for "fingers". The 

resulting "Fingered-Waffle" structure is shown in Fig. 6a and the reference cell for this structure is 

shown in Fig. 6b. The distance x shown in the reference cell is a variable and can take on any non-

negative value. An exact analysis of this structure is not practical but if we approximate each square 

of channel in a 90° corner in the reciprocal device by 0.55 W/L units, a good approximation that is 

modestly smaller than the actual (W/L)effcan be obtained. Approximate the following expressions for 

the area, effective W/L, and the normalized area (for x > 1 ) can be obtained: 

A ref 5 ~ ̂  • [((l + x)d l  + ûf3 + 2d4)- (2 d x  + 2ti?2 )] (37) 

L 

2[(2x — l)d i  + 2 d0 + û?3 + 2 d4 + 3 • 0.55 dx  ] (38) 

dx  -((l+x)^ +d3 +2d4)-(2dx  +2d2) 

(2x-l)rfj +2d^ +ti?3 +2d4 +3-0.55-d^ 

For the fingered-waffle reference cell, the gate area and the diffusion area and perimeter are given by 

\aie 5 = 2 • (4(l + x)<j, + 3 (rf3 + 2 d4)+ 4 d2 ) (40) 

Anffs = ̂ •d.2{2x • dx  + 2 d3 + 4d4 ) + dx(d3 + 2 d4) (41) 

P (njf5 = 2 • [2(2x +1) • dx  + 4d, + 2 d3 + 4 d4 ] (42) 

mi 
l<x> l  

Fig. 6: (a) Fingered-Waffle (b) Reference cell 
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Hexagonal 

The hexagonal shaped transistor has been studied recently for matching properties [7] and some have 

proposed using this to improve area efficiency in extreme-ratio applications. The hexagonal transistor 

is shown in Fig. 7a and a reference cell for this structure is shown in Fig. 7b. The effective W/L is not 

easily obtained for this structure. In [7], the effective W/L was derived to be 

In 
W, 

(43) 

cos 30° 

where Wt and W2 are the physical parameters shown in Fig. 7b. The effective W/L can also be 

derived using the method described in [ 1 ] and can approximated by 

6 • 

V d\ 
(44) 

The parameters Wi and W2 can also be expressed in terms of the design rules variables of Table 1. 

With minimum spacing and square contacts, W1 and W2 are given by 

W, 
' 2 

(45) 

- Vs ' 2 
(46) 

Fig. 7: (a) Hexagonal (b) Reference cell 
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The area of the reference cell is then given by 

A ^ = 4 . 5 - V 3 W /  ( 4 7 )  

The normalized area for hexagonal reference cell, based on the W/L of (44) is 

"" " 4 ^ + 0.4 
d, 

The gate area and the diffusion area and perimeter are given by 

Agateb ~ 6d, %+d^ 

A^ r r ,  =  

\ V 3  ' 2 ;  

3 V 3 /  2  

(49) 

W6 2 
( w ; + 3 - W v )  ( 5 0 )  

V-6 =6(W,+W2) (51) 

Performance comparison 

A quantitative comparison of the performance of the reference cells for the alternative layout 

strategies will be made in this section. The alternating bar structure of Fig. 2 will serve as a reference 

and area savings of all other structures will be compared with that of the alternating bar structure. 

Table 3 shows the area comparison for several different design rule scenarios (defined in Table 2). 

Column 3 consists of typical design rules in the TSMC process. Considering this scenario, it is seen 

that a 40% reduction in area is achievable with the Waffle structure, a 29% reduction is achievable 

with the Star Zag structure and nearly a 43% reduction is achievable with the Fingered-Waffle 

structure. These substantial reductions in area are achieved while still maintaining a large number of 

via contacts and a small source resistance. 

A comparison between column 1 and column 2 is also of interest. Column 1 shows the results 

obtained used standard MOSIS design rules and column 2 shows the results obtained using a 

hypothetical modified MOSIS process. The only change in this modified process is to change the 

minimum diffusion width from 3 to 2. As can be seen from table 3, for almost all the configurations, 

the modified process outperforms the original process. It thus becomes possible to use the formulas 

presented earlier as a guide for developing processes that are capable of area-efficient transistors. 
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A comparison of the diffusion areas of the different layout styles can also be made. Table 4 compares 

the total diffusion area associated with each reference cell. The numbers shown are normalized by 

dividing the diffusion area of each reference cell by its respective W/L. The results show that 

significant reduction of total diffusion area over the alternating bars style is possible for waffle, 

star-zag, modified waffle, and hexagonal styles. The zipper structure, however, has a higher diffusion 

area associated with it. 

Table 2: Different scenarios for layout rules 

MOSIS Modified TSMC 
dl 2 2 1.7 
d2 3 2 2.1 
d3 2 2 2.1 
(14 2 2 1.7 
d5 1.5 1.5 1.0 
d6 2 2 2.1 

Table 3: Area comparison of different layout structures with Alt. Bars structure 

MOSIS Modified TSMC 
1. Alt. Bars 16.0 16.0 12.5 
2. Waffle 9.8 9.8 7.5 

%incr. -38.9 -38.9 -39.7 
3. Zipper 
Normal 16.7 15.5 12.3 

%incr. 4.2 -3.2 -1.2 
Deep 14.3 12.5 10.2 

%incr. -10.7 -21.6 -18.4 
Infinite 10.0 8.0 6.6 

%incr. -37.5 -50.0 -47.1 
4. Star Zag 13.3 10.8 8.9 

%incr. -16.9 -32.3 -29.0 
S.Fingered Waffle 
x = 2 11.3 9.9 7.9 

%incr. -29.6 -37.8 -36.4 
x = 4 10.9 9.4 7.6 

%incr. -31.7 -41.4 -39.3 
x = 10 10.5 8.7 7.1 

%incr. -34.3 -45.4 -42.8 
6. Hexagonal 21.5 19.2 15.4 

%incr 34.4 20.2 23.1 
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Table 4: Normalized diffusion comparison of different layout structures with Alt. Bars structure 

MOSIS Modified TSMC 
1. Alt. Bars 12 12 9.5 

2. Waffle 5.5 5.5 4.4 

%incr. -54.2 -54.2 -53.9 
3. Zipper 
Normal 11.7 10.3 8.6 

%incr. -2.8 -14 -9.9 
Deep 9.6 7.8 6.8 

%incr. -19.6 -34.6 -29.2 
4. Star Zag 8.6 6.0 5.4 

%incr. -28.3 -49.9 -43.7 
S.Fingered Waffle 
x - 2 6.2 4.8 4.2 

%incr. -48.4 -60.3 -56.4 

~T II %
 6.1 4.5 4.0 

%incr. -48.8 -62.1 -57.8 
x = 10 6.1 4.3 3.9 

%incr. ^19.3 -64.3 -59.5 
6. Hexagonal 9.4 8.3 7.7 

%incr -21.6 -30.6 -19.4 

Complete transistor 

With the reference cells characterized, we can now extend those formulas to obtain (W/L)efr, Aref, and 

the diffusion area and perimeter for complete transistors built by the interconnection of the reference 

cells. With the aid of these formulas, it will be easier to compare the area occupied by the transistor of 

a given size. 

For a large transistor, the actual W/L, area occupied, and total diffusion area using a particular layout 

style can be approximately predicted by the formulas for that style presented in the previous section. 

The predicted result will have errors for smaller sized transistors due to increased effect of periphery 

area added for design rules compliance. The choice of shape of each reference cell will determine 

how much area needs to be added or removed to make the complete transistor free of design rule 

violations. Detailed derivation of structures described earlier will be presented next. 
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Alternating Bar Structure 

A complete transistor can be obtained without design rules violations by interconnecting the reference 

cell of Fig. 2b with only one change: Poly at the top of the cell must be removed from the top row of 

the transistor as shown in Fig. 8. The area for a complete transistor in terms of rows of columns of the 

reference cells is given by 

Area,„,an ~ \e/\ ' wws '  columns - AA, (52) 

Fig. 8: Complete alternating bars 

where Aren is given by (9) and 

AA, = \d l  • (d3 + d, )] • columns (53) 

Removing the poly from the top row will also reduce the effective W/L of the complete transistor. 

The total W/L that takes that into account is given by 

L V  ̂  J total 1  

• rows • columns — A 
W 

(54) 
V W i 

where (W/L)ef f I  is given by (10) and 

L)i v 4 y 
• columns (55) 
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With the formulas for the effective (W/L) known, it is easy to work backwards to find the needed 

number of rows and columns to yield the desired (W/L). To make the calculation simpler and to 

achieve a desired aspect ratio, we can define either rows or columns in terms of the other. For 

instance, for a nearly square transistor we can define 1 row = 2 columns. This would yield a 

simplified (54) with the number of columns as the only unknown. 

The total diffusion area for the transistor using alternating bars reference cell can be found in terms of 

the number of rows and columns of the reference cell 

= A#i ' - coZwrmw (56) 

Similarly, the total diffusion perimeter can then be given by 

- cofwmnj + (57) 

APdiff! accounts for the periphery diffusion perimeter in each row and is given by 

APdWl =4 -(d3 + 2d4\rows (58) 

Waffle 

A complete transistor built using interconnecting the waffle structure is shown in figure 9. To make 

the structure design rules compliant, poly has to be removed from the left side of the reference cells in 

the leftmost column as well as from the top of the reference cells in the top row. Due to these two 

modifications, the actual area occupied by the transistor is given by 

A-reamail - Arefi 'rows '  columns - AA2a - AA lh  (59) 

where Are f2  is the reference cell area obtained earlier in (15). The correction due to removing poly 

from the leftmost column is given by 

AA2a = 2(J, + d3 + 2d4 ) d}  • rows (60) 

Similarly, the correction in the area calculation due to poly removal from the top row is given by 

AA lh  — dx  (d{  +d3+ 2d4 )• (columns — l) + dx  -{d3 + 2d4 ) (61) 

The removal of poly also affects the total (W/L)pff of the complete transistor. The actual (W/L) is 

given by 
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V L J total 2 

• rows • columns — A 
\ L j 2  y ^ J 2 b  

(62) 

The correction due to removing poly from the left side is given by 

A 
V L J 2a 

=  2 -
d3 + 2d4 + 0.55 • d ^ 

d, 
rows (63) 

• • • 

• • • 

• • • 

• • • 

Fig.9: Complete waffle 

The change in the (W/L)eff due to the correction in the top row is 

A 
V L j 2i, 

d3 + 2d 4 + 0.55 • flfj 
• (columns-l)+ ̂  + 

d, 
(64) 

We need to know the total diffusion area and perimeter to estimate the parasitic capacitances 

associated with the complete transistor. For the waffle structure, they are given by (in terms of their 

reference cell diffusion and perimeter) 

A%r.„w2 - A#2 ' rmvf-coWms 

Cy.%W2 = ^#2 ' rows - coWms 

(65) 

(66) 
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As a good approximation, half of the total area and perimeter calculated from (65) and (66) can be 

assigned to drain and source each. 

Zipper 

To build a complete transistor using the zipper reference cells, we need to make two additions to the 

stack of the reference cells. First, we need to add enough diffusion at the bottom to form either the 

drain or the source contacts. Second, we need to add diffusion regions to the ends of each row for 

design rules compliance. These two additions are shown in Fig. 10. The total area is then given by 

Areai,mn = Ar/ i 'rows '  columns + AA3a + AA}h  

The correction due to adding the extra diffusion and contacts to the bottom row is given by 

(67) 

i • • 

J •  • • 

• • • • 

Fig. 10: Complete zipper 

AA3„ = [(c/3 +d4+ d5 )(2d t  + 2d2 )] • columns 

Adding diffusion to both ends of each row results in the change given by 

AA3h = ((x + 3)^ + af3 + 2d 4  ) - d 2 -  r o w s  

(68) 

(69) 

For the zipper structure, the change in (W/L)eff due to the needed additions is very small. The only 

change is the small extension of poly needed on both ends of each row. The total (W/L) and the 

correction are given by (70) and (71) below. 
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L 
• rows • columns + A 

V ^ 73 

\ ̂  /3 V d]  J  

rows 

(70) 

(71) 

The total diffusion area associated with the complete transistor can also be found. The total diffusion 

area with the corrections due to diffusion addition to the bottom and each row are given by (72), (73), 

and (74) respectively 

A#.,»*,, = ' rows - coWms + + A4^ 

AAdi f f3a  = {d3 +d4+d5 )(2 dx  + 2 d2 ) • columns 

^-diifib ~ 2((-f + 2)d, +d3 + 2d4)-d2 • rows 

The total diffusion parameter is given by 

&M3 = ̂ 3 ' rowj - + A/^„ 

(72) 

(73) 

(74) 

(75) 

APdiffia and APdig-jb account for the periphery diffusion perimeter in each row and column and are 

given by 

àPdi f fia = ( 4 d t  + 3d2)-columns+ 2(d2 + d3 + 2d 4 )  (76) 

APdiff3b = 2((x + 2)dl + d3 + 2d4)- rows (77) 

For a large transistor, half of the total diffusion area can be allocated to the drain and source each. 

Star Zag 

A complete transistor can be made by joining the star zag reference cells together. A transistor with 

rows=columns=2 is shown in Fig. 11. Notice the two changes in the reference cells in the bottom row 

and right column to make the transistor design rule compliant. Specifically, a strip with a width equal 

to that of a minimum poly width is removed from the bottom row cells and a wider portion is sliced 

from the right side of the right column cells. These changes result in the total area given by 

4rga,„^ = 4 ' rows - co/wmns - AA^ - A4^ (78) 
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Fig. 11 : Complete star zag 

The correction due to area taken from the bottom row cells is given by 

AA4a = 2(4dx  +2d1)-d l  - (columns-\) + (5d l  +4d2)-d l  

The correction due to removing of a portion from the right column cells is given by 

AAu = 3d, (3 d{  + 3d 2 ) • rows 

(79) 

(80) 

Since the area removed earlier contains poly regions, the (W/L)eff of the transistor is reduced. The 

corrected total (W/L)<ff is given by 

V ^  V tola! 4  V ^ J eff 4  

— • rows • columns — A 
V L  y 4 a  

W 

\ ̂  /4A 
(81) 

The correction due to the bottom row cells' modification is given by 

y L J 4 a 

^6.2d, + 2</, ^ 

v 
•(columns -1) + 

^3.65d,+2d :  
x  

2 
(82) 

The reduction in (W/L)eff due to slicing part of the right column cells is given by 

Zt i z \ f • W 

V L y46 V 

1 .Id, + 2d -, 

~d, 
• rows (83) 

J 

By expressing either the rows or the columns in term of the other in (81), the required number of rows 

and columns for a desired (W/L) can be found. 
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To find the diffusion area for the complete transistor, we need to adjust the total area to account for 

the smaller reference cells in the rightmost column and the bottom row. The total diffusion area and 

the above mentioned adjustments are given by 

' rows ' cofwmm - AA^„ - AA^ (84) 

APdi( f4a  = 4rfj • columns (85) 

APdi f f4b = (l4d, - 2d2)-rows (86) 

Similarly, the total diffusion perimeter for a complete transistor for the Star Zag case is given by 

= ̂ #4 ' -A%^ (87) 

APdi f f4a= Ad,-columns (88) 

APdi(f4h = (lM -2d2)- rows (89) 

For a large transistor, drain and source can each be assigned half of the total diffusion area for 

parasitic capacitance calculations. 

Fingered Waffle 

A complete transistor obtained by the interconnection of fingered waffle reference cells (3 rows and 2 

columns) is shown in Fig. 12. In a manner similar to Star Zag configuration discussed earlier, two 

changes need to be made to make the transistor design rule compliant. First, a strip equal to minimum 

poly width is removed from the bottom row. Second, a larger portion is removed from each row. The 

total area for this configuration is given by 

Areaioiai5 =  A r ,  5  '
rows ' columns - AASa - AA5h (90) 

The area correction due to change in the bottom row is given by 

AA5a = 2((x + l)^/j + + 2d ̂  )•(/[• (columns —1) + ((x + ljt/j + 2d^ + 4 d4 ) • d, (91) 

The correction factor to account for the change of area in each row is given by 

AA5h = (x + l)J1 • (2d, + 2 d2 ) • rows (92) 

Since the complete transistor uses some reference cells that are smaller in size, the actual (W/L)^ has 

to be adjusted. The total (W/L) and the needed adjustments are given by 
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L \ / total 5  

• rows • columns - A 
L \  ̂ / 5 a  V ^ /5A 

The change in W/L due to removing poly from the bottom row is 

A 
2x • d t  + 2d^ + 4d4 + 2 • 0.55d, ̂  

V ^ /So dx  

• (columns-1) + 
x • d j + 2 d^ + 4t/4 + 0.55J, 

• • • • 

• u n • 

• • • • 

Fig. 12: Complete modified waffle 

The correction applied due to adjustment to the end of each row is 

A 
r ( 2 x - l X + 2 ^ + 3  0 . 5 5 v / ^  W 

V L J5b 

The total diffusion area is given by 

d, 
• rows 

= 4(0-5 - rows - coWma - AA^^ 

AAdiJ f5  - (2x -d,-d2)- rows 

Similarly, the diffusion perimeter is given by 

- A^ 

=4x 



www.manaraa.com

70 

As an approximation for large transistors, half of the diffusion source and perimeter may be assigned 

to source and drain each. 

Hexagonal 

A complete transistor using the hexagonal reference cell can be built to have a rectangular or a 

non-rectangular aspect ratio. The latter will be assumed here. It should also be noted that the 

reference cell used here is not optimized and better area utilization may be possible. An example of 

rectangular aspect ratio transistor composed of individual reference cells is shown in Figure 7. The 

area and effective W/L of complete transistor are given by 

rows • columns + — (rows + columns) 
3 

(100) 

V ^  J total 6 

rows • columns (101) 

For a given number of rows and columns, the total diffusion area and perimeter are given by 

A-diff..total6 - 3-\/3 rows • columns 2 + (rows + columns)- W2 

V 

diff .total 6 
6 • rows • columns • (W, + W2 )+ (8 • (rows + columns) + 2)-W2 

(102) 

(103) 

For a large transistor, source area is approximately three times larger than the drain area. 

Conclusions 

MOS transistors with very large effective W/L are needed in applications such as switches. Alternate 

layout structures were presented that have the potential of achieving a higher effective W/L ratio for 

the same area utilized by traditional layout structures. Traditional non-rectangular transistor structures 

were analyzed to obtain effective W/L. Alternate layout structures were analyzed for comparison with 

traditional structures. It was shown that substantial reduction in area is achievable by using Waffle 

structures or modified Waffle structures. A reduction in area of over 40% and a reduction in diffusion 

area of more than 50% were demonstrated for a typical process. Although these structures are 

geometrically intricate, closed-form design equations were presented that can facilitate the utilization 

of these structures. 
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chapter 6. conclusion 

The papers presented in this dissertation describe techniques for switched capacitor circuits and for 

reducing the area of extreme ratio transistors. A brief summary of each work and the contribution is 

provided next. 

Capacitor sharing and scaling technique for reduced power in pipelined 

ADCs 

Pipelined ADCs are used for medium to high speed applications with resolutions higher that 8 bits. 

The MDAC forms an integral form of a single stage of a pipeline ADC and is typically implemented 

using switched capacitor techniques. In such implementations, the opamp is a major source of power 

dissipation. Any power savings achieved in the opamp of a pipeline ADC, especially in the first few 

stages, can significantly reduce the total power dissipation of the circuit. The proposed technique is 

based on the observation that the residue voltage stored across the feedback capacitor at the end of an 

amplify phase in an MDAC is typically not utilized. Instead, the next stage's capacitors are used to 

sample the same residue voltage that is amplified later. Additionally, it is known that power savings 

in a pipelined ADC are possible if capacitors in subsequent stages are scaled by the interstage gain. 

The proposed technique eliminates the sampling capacitors of the second of any two consecutive 

stages and reuses the charge stored on the feedback capacitor of the first stage. That feedback 

capacitor can be replaced with a network of capacitors and the residue voltage across this compound 

capacitor is reused in the second stage. The network automatically scales the capacitors by the 

interstage gain while moving it to the second stage. The technique can also be modified to share 

opamps between two stages for additional power savings. 

Contributions 

The contributions for this project are: 

• An architecture level technique that allows reuse of charge on a capacitor by sharing a capacitor 

between two consecutive stages. The technique is not limited by the power supply of the ADC 

and can be used to modify an existing ADC to achieve lower power. 

• The proposed technique can reduce the load of the opamp by more than 40% of the conventional 

case. This reduction can be used to either cut down on the capacitor sizes resulting in reduced 
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power or to achieve a faster speed of operation if the capacitor sizes cannot be made smaller due 

to noise or matching constraints. 

A capacitor sharing technique for RSD cyclic ADC 

Cyclic ADCs are used in applications that require low power dissipation and small area while 

achieving medium levels of accuracies. Due to their nature, achievable speeds are typically lower 

than those achievable by pipelined ADC. However, the traditional cyclic ADC implementations are 

very similar to the first two stages of a pipeline ADC. This resemblance allows the extending of the 

technique proposed for the pipeline ADC earlier to cyclic ADCs. In the proposed technique, the 

residue charge stored across a set of capacitors in the first cycle is reused in the next clock cycle. The 

technique can be combined with other area and power saving techniques such as opamp sharing. 

Error correction techniques that can tolerate large offset errors in the comparators are combined with 

the implementation. A 10-bit, 2.3MHz cyclic ADC in AMI 0.5(u process was implemented that used 

shared opamp as well as error correction technique. Simulation results show a THD of -76.1 ldB and 

an SFDR of 74.95dB. 

Contributions 

The contributions in this work are: 

• The technique proposed for the pipeline ADC was extended for use with cyclic ADCs. The 

charge stored on a set of feedback capacitors in the first cycle is reused during the second cycle. 

Similar to the pipeline case, the technique allows making architecture level changes independent 

of the supply voltage values. 

• It was shown that the conventional circuit could be modified to achieve either a smaller area and 

reduced power by reducing the capacitor sizes or faster operation by reducing the loading on the 

opamp. To a first order, 50% reduction in dynamic power dissipation is possible. 

A low temperature sensitivity switched-capacitor current reference 

Voltage and current references are used in virtually all analog integrated circuits. It is desirable that 

these reference quantities remain as constant with temperature variations as possible. Unlike voltage 

references that can be derived from intrinsic physical values of the process, no intrinsic current 
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reference is available in CMOS. However, a reference current that has low temperature sensitivity can 

be obtained using switched capacitor technique. A highly stable clock is usually available to systems 

that consist of switched capacitor circuits. The proposed technique utilizes this stable clock in 

conjunction with linear capacitors available in many processes to generate a current that has a very 

low sensitivity to temperature variations. The technique involves transferring a fixed amount of 

charge onto a circuit node whose time average value is kept constant using a feedback network. 

Simulated results presented in the paper showed the variation in the reference current to be less than 

0.029% over a temperature range of -40 °C to 125 °C. 

Contributions 

The contributions of this work are: 

• A technique of generating a reference current with very low temperature sensitivity. The 

proposed switched capacitor technique uses a stable external clock and linear capacitors on chip 

to generate a reference current with low temperature sensitivity. 

• Practical design issues were anticipated and possible solutions were presented. Techniques to 

increase the output resistance, improving the settling time, and reducing ripple in the reference 

current were demonstrated. 

Area efficient layout strategies for extreme-ratio MOS transistors 

MOS transistors are often used as switches and in pad drivers that drive large external loads. These 

applications typically require the effective resistance of the transistor to be very low. The effective 

resistance of a MOS transistor operated as a switch is affected by several parameters. The four that 

generally receive the most attention are the W/L ratio, the excess bias, the series diffusion resistance, 

and the contact resistance. For applications requiring low resistance, large effective W/L ratios are 

used along with multiple contacts to the drain and source diffusions. Instead of using one huge poly to 

form the gate of the transistor, the large effective W/L ratio is traditionally achieved by connecting 

multiple transistors of smaller W/L ratio in parallel. However, these transistors are not the most area 

efficient, as shown in the paper. Instead of using multiple fingers, alternate structures such as the 

waffle and its variants result in higher area efficiency for a given W/L. 

Parasitic capacitances associated with the diffusion regions of transistors can become a limiting factor 

in the high speed performance of the design. For such designs, any reduction in these parasitic 
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capacitances is highly desirable. Using alternate layout structures results in reduced diffusion area and 

perimeters, i.e., smaller parasitic capacitance, enabling higher speeds of operation. 

Contributions 

The contributions of this work are: 

• Alternate existing and layout structures for MOS transistor with extremely large effective W/L 

ratios were presented. Closed form expressions based on the physical design rules were derived. 

The expressions can be used to determine the number of building blocks needed to create a 

complete transistor. 

• Expanded expressions for the complete transistor were presented. These expressions for the 

(W/L)eftective and total area included periphery effects of putting together a complete large 

transistor. 

• The derived expressions were used to compare the performance of different layout structures and 

compared with the traditional structure. The equations presented in the paper used design rules 

as variables. As a result, it becomes possible to compare the different layouts conforming to 

different sets of design rules. Using design rule based expressions also makes it possible to 

evaluate a new process for area efficiency of very large transistors. 
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